	Ques	tion	Answer	Mark	Guidance
1	(a)	(i)	HOCH ₂ COOH + NaOH → HOCH ₂ COONa + H ₂ O ✓	1	ALLOW: $HOCH_2COOH + OH^- \rightarrow HOCH_2COO^- + H_2O$ ALLOW: $H^+ + OH^- \rightarrow H_2O$ DO NOT ALLOW molecular formulae (cannot see which OH has reacted)
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.142 (mol dm ⁻³), award 2 marks amount of HOCH ₂ COOH = $0.125 \times \frac{25.0}{1000}$ = 0.003125 (mol) \checkmark concentration NaOH = $0.003125 \times \frac{1000}{22.00}$ = 0.142 (mol dm ⁻³) \checkmark	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 3.125 × 10^{-3} mol ALLOW ECF: answer above × $\frac{1000}{22.00}$ ALLOW 2 SF: 0.14 to calculator value: 0.142045454 If candidate has written in (a)(i): HOCH ₂ COOH + 2NaOH, mark by ECF: concentration NaOH = 2 × 0.003125 × $\frac{1000}{22.00}$ = 0.284 (mol dm ⁻³)
		(iii)	Vertical section matches the (pH) range (of the indicator) OR colour change (of the indicator) OR end point (of the indicator) ✓	1	ALLOW stated pH range for vertical section at about 7–10, 6–10, etc ie ALLOW 'pH range must be about 7–10' ALLOW 'pH changes rapidly' for vertical section ALLOW 'equivalence point' for vertical section, ie ALLOW equivalence point matches the (pH) range, etc DO NOT ALLOW just 'end point matches (pH) range' DO NOT ALLOW just 'indicator matches vertical section' Response must link either the pH range or colour change or end point with the vertical section / pH range ~ 7–10

Ques	stion	er	Mark	Guidance
(b)	(i)	$(K_{a} =) \frac{\left[H^{+}\right] \left[HOCH_{2}COO^{-}\right]}{\left[HOCH_{2}COOH\right]} \checkmark$	1	IGNORE state symbols IGNORE $\frac{\left[H^{+}\right]^{2}}{\left[HOCH_{2}COOH\right]}$ in (i) but ALLOW in (ii)
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.46 x 10 ⁻⁴ , award 2 marks THEN IF units are mol dm ⁻³ , award 1 further mark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below UNITS can be credited with no numerical answer
		$[H^+] = 10^{-2.37} = 0.00427 \pmod{\text{mol dm}^{-3}} \checkmark$ $K_a = \frac{0.00427^2}{0.125} = 1.46 \times 10^{-4} \checkmark$ units: mol dm ⁻³ \checkmark	2	ALLOW 4.27 x 10^{-3} (mol) ALLOW 2 SF: 0.0043 up to 0.0042 5795188 (calc value) IF candidate has rounded to 0.00427 (mol dm ⁻³) in 1st response, credit EITHER 2 SF: 1.5 x 10^{-4} up to 1.458632 x 10^{-4} (from 0.00427) OR 2 SF: 1.5 x 10^{-4} up to 1.455760687 x 10^{-4} (from unrounded calculator value of 0.004265795188) ALLOW calculation based on equilibrium conc of glycolic acid as 0.125 – [H ⁺]: Using [H ⁺] = 0.00427, $K_a = \frac{0.00427^2}{0.125 - 0.00427} = 1.51 \times 10^{-4}$
	(iii)	% dissociation = $\frac{0.00427}{0.125} \times 100 = 3.4$ (%) \checkmark Assume working from EITHER from a rounded [H ⁺] OR unrounded calculator value of b(ii) [H ⁺]	1	For UNITS this is the ONLY correct answer ALLOW ECF using calculated [H ⁺] from b(ii), ALLOW 2 SF: 3.4 % up to calculator value Note: [H ⁺] from b(ii) displayed at top of answer window DO NOT MARK THIS TWICE!

Question	Answer	Mark	Guidance
(c)	ONE mark for equilibrium expression equilibrium: HOCH₂COOH = H+ + HOCH₂COO-✓	1	ANNOTATE WITH TICKS AND CROSSES, etc DO NOT ALLOW H ⁺ , A ⁻ and HA ALLOW < -> as alternative for equilibrium sign
	Four marks for action of buffer		ALLOW response in terms of H ⁺ , A ⁻ and HA Equilibrium responses must refer back to a written equilibrium IF more than one equilibrium shown, assume correct one
	HOCH ₂ COOH reacts with added alkali OR HOCH ₂ COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓ → HOCH ₂ COO ⁻		ALLOW weak acid reacts with added alkali DO NOT ALLOW acid reacts with added alkali
	OR Equilibrium → right ✓ HOCH₂COO⁻ reacts with added acid ✓ → HOCH₂COOH OR Equilibrium → left ✓	4	ALLOW conjugate base reacts with added acid DO NOT ALLOW salt/base reacts with added acid
	Two marks for preparation of buffer Ammonia reacted with an excess of glycolic acid OR some glycolic acid remains ✓ HOCH₂COOH + NH₃ → HOCH₂COONH₄ ✓	2	ALLOW as products $HOCH_2COO^- + NH_4^+$ ALLOW = sign instead of \rightarrow
(d)	Base 1 + Acid 2 ⇒ Acid 1 + Base 2 1st mark for identifying acids and bases. ✓ 2nd mark for correct pairing (ie numbers) ✓	2	ALLOW: Base 2 + Acid 1 ⇒ Acid 2 + Base 1

Question		Answer	Mark	Guidance
(e)		$2HSCH2COO- + R-S-S-R$ $\longrightarrow {}^{-}OOCCH2S-SCH2COO- + 2 SH \checkmark$ $2R-SH + H2O2 \longrightarrow R-S-S-R + 2H2O \checkmark$	2	ALLOW (SCH ₂ COO ⁻) ₂ ALLOW equation with ammonium salt, ie: 2HSCH ₂ COONH ₄ + H ₄ NOOCCH ₂ S-SCH ₂ COONH ₄ +
		Total	20	

	Ques	tion	Answer	Mark	Guidance
2	(a)	(i)	$(K_{w} =) [H^{+}(aq)] [OH^{-}(aq)] \checkmark$	1	IGNORE state symbols ALLOW [H ₃ O ⁺ (aq)] [OH ⁻ (aq)]
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.3×10^{-10} (mol dm ⁻³), award 2 marks IF answer = 2.34×10^{-10} (mol dm ⁻³), award 1 mark		IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc
			$[H^+] = 10^{-pH} = 4.27 \times 10^{-5} \text{ (mol dm}^{-3}\text{)} \checkmark$		ALLOW 4.3 × 10 ⁻⁵ up to calculator: 4.265795188 × 10 ⁻⁵ ALLOW 0.0000427
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{4.27 \times 10^{-5}}$ = 2.34 × 10 ⁻¹⁰ = 2.3 × 10 ⁻¹⁰ (mol dm ⁻³) ✓	2	Answer MUST be to 2 SF (in question) ALLOW = 2.3 ×10 ^{-x} (mol dm ⁻³) for 1 mark (must be a negative power) ALLOW alternative approach based on pOH:
					pOH = $14 - 4.27 = 9.63 \checkmark$ (DO NOT ALLOW 9.6) [OH ⁻] = $10^{-pOH} = 10^{-9.63} = 2.3 \times 10^{-10}$ (mol dm ⁻³) \checkmark
	(b)	(i)	Endothermic because K _w increases with temperature ✓	1	Endothermic AND reason required for the mark ALLOW Endothermic because increasing temperature shifts equilibrium/reaction to the right
		(ii)	$K_{\rm w}$ value from graph from 2.2 to 2.6 × 10 ⁻¹⁴ (mol ² dm ⁻⁶) \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc Actual $K_w = 2.38 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
			Using 2.4×10^{-14} , $[H^+] = \sqrt{2.4 \times 10^{-14}}$ OR 1.55×10^{-7} \checkmark		For this mark, candidate must use a value between 2.0 and 3.0×10^{-14} (mol ² dm ⁻⁶), <i>ie</i> from the approximately correct region of the graph,
			pH = $-\log (1.55 \times 10^{-7}) = 6.81$ (using $K_w = 2.4 \times 10^{-14}$) \checkmark	3	ALLOW 6.8 up to calculator value Note : You will need to calculate the pH value from the candidate's estimate of K_w at 37 °C before awarding the 3rd marking point ONLY award an ECF pH mark if candidate has generated a value of [H ⁺] by attempting to take a square root of a value between 2.0 and 3.0×10^{-14}

Question		Answer	Mark	Guidance	
(b)	(iii)	(Work is) inaccurate OR invalid because K _w varies with temperature ✓	1	Response requires reason for inaccuracy/invalidity in terms of $K_{\rm w}$ ALLOW incorrect with reason IGNORE unreliable ALLOW inaccurate because wrong $K_{\rm w}$ was used For $K_{\rm w}$ varies with temperature, ALLOW equilibrium shifts with temperature	
(c)				ANNOTATE WITH TICKS AND CROSSES, etc	
		Acid and alkali mixed ✓		ALLOW 'base' for 'alkali throughout ALLOW if mentioned anywhere which could be within a definition for enthalpy change of neutralisation	
		Amounts of acid AND alkali stated ✓		Amounts could be expressed as amounts, moles, volumes OR concentrations	
		Temperature taken at start AND finish ✓		ALLOW temperature change	
		energy, $Q = mc\Delta T$ OR in words AND meaning of m , c AND ΔT given \checkmark		m = mass/volume of solution/reactants/mixture, etc (but NOT surroundings) c = (specific) heat capacity (of solution/water) OR 4.18/4.2 ΔT = temperature change	
		Energy scaled up to form 1 mol of water ✓		ALLOW divide energy by moles	
		ΔH _{neut} = −energy change ✓	6	ALLOW '-' sign shown in earlier part, ie $\Delta H_{\text{neut}} = -\frac{Q}{n}$	
				ALLOW a statement linking ΔH with temperature change, <i>ie</i> : IF temperature increases, ΔH_{neut} is $-\mathbf{ve}$ OR IF temperature decreases, ΔH_{neut} is +ve	
			(c) Acid and alkali mixed ✓ Amounts of acid AND alkali stated ✓ Temperature taken at start AND finish ✓ energy, Q = mcΔT OR in words AND meaning of m, c AND ΔT given ✓ Energy scaled up to form 1 mol of water ✓	(c) Acid and alkali mixed ✓ Amounts of acid AND alkali stated ✓ Temperature taken at start AND finish ✓ energy, $Q = mc\Delta T$ OR in words AND meaning of m , c AND ΔT given ✓ Energy scaled up to form 1 mol of water ✓	

Question	Answer	Mark	Guidance
(d)			ANNOTATE WITH TICKS AND CROSSES, etc
			Throughout question, ORA in terms of Rb ⁺ Throughout question, ALLOW energy for enthalpy
	Ionic radius Potassium ion OR K⁺ OR K ion is smaller OR K⁺ has greater charge density ✓		DO NOT ALLOW potassium OR K OR reference to atoms (<i>ie</i> reference to ions is required throughout a response)
	Lattice enthalpy Lattice enthalpy of KF is more negative than RbF ✓ OR		ALLOW lattice enthalpy of KF > lattice enthalpy of RbF
	K ⁺ has greater attraction for F ⁻		ALLOW more energy needed to separate K ⁺ AND F ⁻ IGNORE KF has stronger bonds
	Hydration enthalpy ΔH(hydration) of K ⁺ is more negative than Rb ⁺ ✓ OR		ALLOW ΔH (hydration) of K ⁺ > ΔH (hydration) of Rb ⁺
	K ⁺ has greater attraction for H ₂ O		ALLOW more energy needed to separate K ⁺ AND H ₂ O IGNORE K ⁺ has a stronger bond to H ₂ O
	Enthalpy change of solution Idea that ΔH (solution) is affected more by lattice enthalpy than by hydration enthalpy \checkmark	4	ALLOW a correct attempt to link the contribution of lattice enthalpy and hydration enthalpy to ΔH (solution), <i>ie</i> lattice enthalpy is a more important factor than hydration enthalpy
(e)	(During dissolving,) entropy/disorder increases OR disorder increases ✓		ALLOW entropy change is positive OR ΔS is positive OR $T\Delta S$ is positive
	$T\Delta S > \Delta H$ OR $T\Delta S$ is more positive than ΔH OR $\Delta H - T\Delta S$ is negative \checkmark	2	ALLOW $\Delta S(\text{system}) > \Delta H/T$ ALLOW $\Delta S(\text{system})$ is more positive than $\Delta H/T \checkmark$ ALLOW $\Delta S(\text{system}) + \Delta S(\text{surroundings})$ is positive
			ALLOW Energy contribution from increase in entropy is greater than decrease in energy from enthalpy change OR entropy change outweighs enthalpy change
			IGNORE ΔG is negative
Dhy dian 1 n	MathsTutor.com Total	20	